2=(x^2)/3600-60x

Simple and best practice solution for 2=(x^2)/3600-60x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2=(x^2)/3600-60x equation:



2=(x^2)/3600-60x
We move all terms to the left:
2-((x^2)/3600-60x)=0
Domain of the equation: 3600-60x)!=0
We move all terms containing x to the left, all other terms to the right
-60x)!=-3600
x!=-3600/1
x!=-3600
x∈R
We get rid of parentheses
-x^2/3600+60x+2=0
We multiply all the terms by the denominator
-x^2+60x*3600+2*3600=0
We add all the numbers together, and all the variables
-1x^2+60x*3600+7200=0
Wy multiply elements
-1x^2+216000x+7200=0
a = -1; b = 216000; c = +7200;
Δ = b2-4ac
Δ = 2160002-4·(-1)·7200
Δ = 46656028800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{46656028800}=\sqrt{14400*3240002}=\sqrt{14400}*\sqrt{3240002}=120\sqrt{3240002}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(216000)-120\sqrt{3240002}}{2*-1}=\frac{-216000-120\sqrt{3240002}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(216000)+120\sqrt{3240002}}{2*-1}=\frac{-216000+120\sqrt{3240002}}{-2} $

See similar equations:

| 5x-3+7=6x-3-4+8x | | 1/(12x+8)=20 | | 31x+9=31x+77 | | 1/2+6n=16 | | 40x+9=40x+80 | | x^2−2x+1=4 | | t^2-45t-45=0 | | 36x+8=26x+102 | | 10a(20-4a)=0 | | y/2y-1+3/1-2y=0 | | y=-2(-1/3)^2+7(-1/3)-2 | | 4x-7=11+3x | | 7x+15=3x | | 3-6m=5 | | 6+2a+4a= | | 3k+15=12k | | (12-8)*5x=20 | | -9-3(2p-1)=-39 | | (14n)+(2)-(7n)=37 | | -z+2z-z=-1+2+1 | | .31+5x=2x-17 | | 29-3x=4x+8 | | 3x-2.7=2x+x | | 11m-6m+8=22 | | 3x+72=-5x | | 85-a=37 | | 1110-v=197 | | 24/1/24=n/1/2 | | 85-a=30 | | 2x+3x+5x=81+9 | | 4b-1000=-b | | x^2-2x-2=-2x^2-3x+2 |

Equations solver categories